metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Diaqua[(*E*)-2-(2-oxidobenzylideneamino)-2-phenylacetato]zinc(II) dimethyl sulfoxide monosolvate

Jun You, Bo Liu,* Yu-Jing Pang and Qing-Cui Wu

School of Chemistry and Environment Engineering, Harbin University of Science and Technology, Harbin 150040, People's Republic of China Correspondence e-mail: liubo200400@vip.sina.com

Received 31 May 2009; accepted 1 June 2009

Key indicators: single-crystal X-ray study; T = 291 K; mean σ (C–C) = 0.004 Å; R factor = 0.033; wR factor = 0.098; data-to-parameter ratio = 18.3.

In the title compound, $[Zn(C_{15}H_{11}NO_3)(H_2O)_2]\cdot C_2H_6OS$, the Zn(II) ion is coordinated by two O atoms and one N atom of the deprotonated chelate ligand and two water molecules in a distorted trigonal bipyramidal coordination environment. A linear supramolecular structure built from $O-H\cdots O$ hydrogen bonds runs parallel to [100].

Related literature

For the synthesis of (E)-2-(2-hydroxybenzylideneamino)-2phenylacetic acid, see Audriceth *et al.* (1954). For a related zinc complex, see: You *et al.* (2008).

Experimental

Crystal data

$$\begin{split} & [\text{Zn}(\text{C}_{15}\text{H}_{11}\text{NO}_3)(\text{H}_2\text{O})_2] \cdot \text{C}_2\text{H}_6\text{OS} \\ & M_r = 432.78 \\ & \text{Triclinic, } P\overline{1} \\ & a = 7.331 \ (4) \text{ Å} \\ & b = 9.318 \ (5) \text{ Å} \\ & c = 14.578 \ (9) \text{ Å} \end{split}$$

 $\alpha = 81.91 (2)^{\circ}$ $\beta = 81.37 (2)^{\circ}$ $\gamma = 80.18 (2)^{\circ}$ $V = 963.4 (9) \text{ Å}^{3}$ Z = 2Mo K\alpha radiation $\mu = 1.42 \text{ mm}^{-1}$ T = 291 K

Data collection

Rigaku R-AXIS RAPID	9415 measured reflections
diffractometer	4331 independent reflections
Absorption correction: multi-scan	3751 reflections with $I > 2\sigma(I)$
(ABSCOR; Higashi, 1995)	$R_{\rm int} = 0.024$
$T_{\min} = 0.777, \ T_{\max} = 0.837$	

 $0.19 \times 0.15 \times 0.13 \text{ mm}$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.033$ 237 parameters $wR(F^2) = 0.098$ H-atom parameters constrainedS = 1.15 $\Delta \rho_{max} = 0.48 \text{ e } \text{\AA}^{-3}$ 4331 reflections $\Delta \rho_{min} = -0.28 \text{ e } \text{\AA}^{-3}$

Table 1

Selected geometric parameters (Å, °).

N1-Zn1	2.0305 (19)	O4-Zn1	2.009 (2)
O1-Zn1	2.1047 (17)	O5-Zn1	2.0015 (19)
O3-Zn1	1.9742 (18)		

 Table 2

 Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
O4−H23···O6	0.85	1.90	2.725 (3)	164
$O4-H24\cdots O2^{i}$	0.85	1.88	2.695 (3)	160
$O5-H21\cdots O2^{ii}$	0.85	1.81	2.629 (2)	161
$O5 - H22 \cdots O6^{iii}$	0.85	1.93	2.742 (3)	159

Symmetry codes: (i) -x + 2, -y + 1, -z; (ii) x - 1, y, z; (iii) -x + 1, -y + 1, -z.

Data collection: *RAPID-AUTO* (Rigaku, 1998); cell refinement: *RAPID-AUTO*; data reduction: *CrystalStructure* (Rigaku/MSC, 2002); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXL97*.

This work was supported by the National Natural Science Foundation of China (grant No. 20272011) and Harbin University of Science and Technology.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG2591).

References

Audriceth, L. F., Scott, E. S. & Kipper, P. S. (1954). J. Org. Chem. 19, 733-741. Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.

- Rigaku (1998). *RAPID-AUTO*. Rigaku Corporation, Tokyo, Japan.
- Rigaku (1998). *KAFID-ACTO*. Kigaku Corporation, Tokyo, Japan. Rigaku/MSC (2002). *CrystalStructure*. Rigaku/MSC Inc., The Woodlands,
- Texas, USA.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.
- You, J., Liu, B., Chen, Y.-Q., Xiao, C. & Zhai, D.-Q. (2008). Acta Cryst. E64, m1338.

supplementary materials

Acta Cryst. (2009). E65, m734 [doi:10.1107/S1600536809020741]

Diaqua[(E)-2-(2-oxidobenzylideneamino)-2-phenylacetato]zinc(II) dimethyl sulfoxide monosolvate

J. You, B. Liu, Y.-J. Pang and Q.-C. Wu

Comment

The continuous interest in designing and making novel Schiff base ligand and transition-metal complexes have persisted because of their impressive catalytic property. Recently, our group have reported a Schiff base and Zn(II) complex (You *et al.*, 2008). As the continually working, we report a new title Schiff base complex, herein, synthesized by the reaction of (E)-2-(2-hydroxybenzylideneamino)-2-phenylacetic acid and Zn(OAc)₂.

As shown in Fig. 1, Zn^{II} ion is five-coordinate in a slightly distorted trigonal-bipyramidal coordination environment, two water molecules and one N formed the equatorial plane and two deprotonated O atoms take up the apices positions.

The cocrystalized dimethylsulfoxide molecules link the discrete coordinate compound to a one-dimensional tubal supramolecular structure, *via* the O—H…O hydrogen bonds parallel to [100] (Fig. 2).

Experimental

(E)-2-(2-hydroxybenzylideneamino)-2-phenylacetic acid was prepared of 2-amino-2-phenylacetic acid and 2-hydroxybenzylideneamino)-2-phenylacetic acid (0.255 g, 1 mmol) and Zn(OAc)₂ (0.190 g, 1 mmol) dissolved in hot aqueous solution (20 ml) then refluxed for 1 huor. After cooling to room temperature the solution was filtered, the residue was recrystaled in DMSO and methanol (10/1, V/V) solution, several days latter, a suitable for X-ray diffraction yellow crystal was obtained.

Refinement

H atoms bound to C atoms were placed in calculated positions and treated as riding on their parent atoms, with C—H = 0.93 Å (aromatic C), C—H = 0.98 Å (methylene C), C—H = 0.96 Å (methyl C) and with $U_{iso}(H) = 1.2Ueq(C)$. Water H atoms were initially located in a difference Fourier map, but they were treated as riding on their parent atoms with O—H = 0.85 Å and with with $U_{iso}(H) = 1.5U_{eq}(O)$.

Figures

Fig. 1. The molecular structure of (I), showing displacement ellipsoids at the 30% probability level for non-H atoms.

Fig. 2. A partial packing view, showing the one-dimensional tubal supramolecular structure. H atoms not involved in hydrogen bonds have been omitted for clarity.

Diaqua[(E)-2-(2-oxidobenzylideneamino)-2-phenylacetato]zinc(II) dimethyl sulfoxide solvate

Z = 2 $F_{000} = 448$

 $D_{\rm x} = 1.492 \text{ Mg m}^{-3}$ Mo *K* α radiation $\lambda = 0.71073 \text{ Å}$

 $\theta = 3.0-27.5^{\circ}$ $\mu = 1.42 \text{ mm}^{-1}$

T = 291 K

Block, colorless

 $0.19 \times 0.15 \times 0.13 \text{ mm}$

Cell parameters from 8052 reflections

Crystal data

$[Zn(C_{15}H_{11}NO_3)(H_2O)_2] \cdot C_2H_6OS$ $M_r = 432.78$
Triclinic, PT
Hall symbol: -P 1
a = 7.331 (4) Å b = 9.318 (5) Å
c = 14.578(9) Å

c = 14.578 (9) Å $\alpha = 81.91 (2)^{\circ}$ $\beta = 81.37 (2)^{\circ}$ $\gamma = 80.18 (2)^{\circ}$ $V = 963.4 (9) \text{ Å}^{3}$

Data collection

Rigaku R-AXIS RAPID diffractometer	4331 independent reflections
Radiation source: fine-focus sealed tube	3751 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.024$
T = 291 K	$\theta_{\text{max}} = 27.5^{\circ}$
ω scan	$\theta_{\min} = 3.0^{\circ}$
Absorption correction: multi-scan (ABSCOR; Higashi, 1995)	$h = -9 \rightarrow 8$
$T_{\min} = 0.777, T_{\max} = 0.837$	$k = -12 \rightarrow 12$
9415 measured reflections	$l = -18 \rightarrow 18$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.033$	H-atom parameters constrained
$wR(F^2) = 0.098$	$w = 1/[\sigma^2(F_o^2) + (0.0512P)^2 + 0.2263P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.15	$(\Delta/\sigma)_{\rm max} = 0.001$
4331 reflections	$\Delta \rho_{max} = 0.48 \text{ e} \text{ Å}^{-3}$
237 parameters	$\Delta \rho_{min} = -0.28 \text{ e} \text{ Å}^{-3}$

Primary atom site location: structure-invariant direct Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	у	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
C1	0.9379 (3)	0.7675 (2)	0.26445 (14)	0.0316 (4)
C2	0.7789 (4)	0.8689 (3)	0.24967 (18)	0.0451 (5)
H2	0.6891	0.8462	0.2176	0.054*
C3	0.7553 (5)	1.0041 (3)	0.2831 (2)	0.0589 (7)
Н3	0.6491	1.0719	0.2736	0.071*
C4	0.8891 (5)	1.0382 (3)	0.3305 (2)	0.0671 (9)
H4	0.8718	1.1284	0.3535	0.080*
C5	1.0461 (5)	0.9402 (3)	0.3436 (2)	0.0612 (8)
Н5	1.1362	0.9643	0.3749	0.073*
C6	1.0726 (4)	0.8041 (3)	0.31051 (17)	0.0457 (6)
H6	1.1806	0.7379	0.3193	0.055*
C7	0.9648 (3)	0.6175 (2)	0.23069 (14)	0.0286 (4)
H7	1.0767	0.5582	0.2531	0.034*
C8	0.9913 (3)	0.6342 (2)	0.12286 (14)	0.0287 (4)
C9	0.7835 (3)	0.4801 (2)	0.34886 (15)	0.0339 (4)
Н9	0.8721	0.4896	0.3862	0.041*
C10	0.6363 (3)	0.3983 (2)	0.39195 (15)	0.0356 (5)
C11	0.6505 (4)	0.3309 (3)	0.48364 (17)	0.0521 (6)
H11	0.7511	0.3425	0.5124	0.063*
C12	0.5219 (5)	0.2490 (4)	0.5320 (2)	0.0635 (8)
H12	0.5353	0.2044	0.5923	0.076*
C13	0.3711 (5)	0.2339 (4)	0.4894 (2)	0.0655 (8)
H13	0.2828	0.1781	0.5217	0.079*
C14	0.3488 (4)	0.2995 (3)	0.4004 (2)	0.0559 (7)
H14	0.2444	0.2886	0.3743	0.067*
C15	0.4808 (3)	0.3834 (3)	0.34729 (15)	0.0392 (5)
C16	0.1636 (4)	0.2801 (3)	0.1543 (2)	0.0527 (6)
H16A	0.2255	0.3352	0.1877	0.079*
H16B	0.0506	0.2573	0.1919	0.079*
H16C	0.1341	0.3372	0.0969	0.079*
C17	0.1686 (4)	0.0495 (3)	0.0617 (2)	0.0495 (6)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

supplementary materials

H17A	0.1290	0.1261	0.0143	0.074*
H17B	0.0612	0.0201	0.1014	0.074*
H17C	0.2381	-0.0330	0.0327	0.074*
N1	0.8040 (2)	0.54080 (19)	0.26458 (12)	0.0301 (4)
01	0.8636 (2)	0.60996 (18)	0.08213 (10)	0.0366 (3)
O2	1.1404 (2)	0.67381 (19)	0.08264 (11)	0.0400 (4)
O3	0.4514 (2)	0.4435 (2)	0.26298 (12)	0.0505 (4)
O4	0.6986 (3)	0.3510(2)	0.09429 (13)	0.0581 (5)
H23	0.6190	0.2942	0.0951	0.087*
H24	0.7571	0.3634	0.0395	0.087*
O5	0.4726 (2)	0.7027 (2)	0.11810 (12)	0.0471 (4)
H21	0.3578	0.6969	0.1193	0.071*
H22	0.5174	0.7309	0.0626	0.071*
O6	0.4740 (2)	0.16387 (19)	0.06180 (12)	0.0447 (4)
S1	0.31254 (8)	0.11488 (6)	0.12970 (4)	0.03825 (14)
Zn1	0.63958 (3)	0.52441 (3)	0.167315 (16)	0.03534 (10)

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0338 (10)	0.0317 (10)	0.0280 (9)	-0.0083 (8)	0.0023 (8)	-0.0019 (8)
C2	0.0419 (13)	0.0445 (13)	0.0463 (13)	-0.0040 (11)	-0.0015 (10)	-0.0040 (11)
C3	0.0648 (18)	0.0380 (13)	0.0642 (18)	0.0045 (13)	0.0099 (14)	-0.0074 (13)
C4	0.104 (3)	0.0411 (15)	0.0562 (17)	-0.0236 (17)	0.0161 (17)	-0.0183 (13)
C5	0.080(2)	0.0554 (17)	0.0589 (17)	-0.0311 (16)	-0.0067 (15)	-0.0191 (14)
C6	0.0504 (14)	0.0492 (14)	0.0420 (13)	-0.0155 (12)	-0.0069 (11)	-0.0102 (11)
C7	0.0240 (9)	0.0327 (10)	0.0301 (10)	-0.0082 (8)	-0.0031 (7)	-0.0031 (8)
C8	0.0257 (9)	0.0303 (10)	0.0296 (9)	-0.0069 (8)	0.0021 (7)	-0.0040 (8)
C9	0.0360 (11)	0.0367 (11)	0.0287 (10)	-0.0072 (9)	-0.0026 (8)	-0.0023 (8)
C10	0.0412 (12)	0.0338 (11)	0.0285 (10)	-0.0080 (9)	0.0059 (9)	-0.0009 (8)
C11	0.0544 (15)	0.0632 (16)	0.0338 (12)	-0.0107 (13)	0.0012 (11)	0.0063 (11)
C12	0.070 (2)	0.071 (2)	0.0398 (14)	-0.0145 (16)	0.0081 (13)	0.0177 (13)
C13	0.073 (2)	0.0637 (18)	0.0534 (16)	-0.0298 (16)	0.0221 (15)	0.0079 (14)
C14	0.0502 (15)	0.0702 (18)	0.0470 (14)	-0.0287 (14)	0.0107 (12)	-0.0001 (13)
C15	0.0409 (12)	0.0429 (12)	0.0321 (11)	-0.0141 (10)	0.0088 (9)	-0.0035 (9)
C16	0.0515 (15)	0.0485 (14)	0.0578 (16)	-0.0065 (12)	0.0028 (12)	-0.0166 (12)
C17	0.0400 (13)	0.0417 (13)	0.0701 (17)	-0.0152 (11)	-0.0069 (12)	-0.0076 (12)
N1	0.0288 (8)	0.0341 (9)	0.0271 (8)	-0.0091 (7)	-0.0001 (7)	-0.0014 (7)
01	0.0290 (7)	0.0560 (10)	0.0274 (7)	-0.0179 (7)	-0.0024 (6)	-0.0014 (7)
O2	0.0281 (7)	0.0587 (10)	0.0355 (8)	-0.0200 (7)	0.0042 (6)	-0.0064 (7)
03	0.0414 (9)	0.0763 (12)	0.0367 (9)	-0.0303 (9)	-0.0009 (7)	0.0050 (8)
O4	0.0618 (12)	0.0754 (13)	0.0467 (10)	-0.0448 (10)	0.0172 (9)	-0.0239 (9)
05	0.0268 (8)	0.0655 (11)	0.0470 (9)	-0.0145 (8)	-0.0050 (7)	0.0094 (8)
O6	0.0350 (8)	0.0511 (10)	0.0497 (10)	-0.0179 (7)	0.0021 (7)	-0.0060 (8)
S1	0.0338 (3)	0.0366 (3)	0.0427 (3)	-0.0104 (2)	-0.0032 (2)	0.0048 (2)
Zn1	0.02999 (15)	0.05017 (18)	0.02839 (14)	-0.01813 (11)	-0.00285 (9)	0.00044 (10)

Geometric parameters (Å, °)

C1—C6	1.386 (3)	C12—H12	0.9300
C1—C2	1.393 (3)	C13—C14	1.376 (4)
C1—C7	1.519 (3)	C13—H13	0.9300
C2—C3	1.388 (4)	C14—C15	1.418 (3)
С2—Н2	0.9300	C14—H14	0.9300
C3—C4	1.383 (5)	C15—O3	1.310 (3)
С3—Н3	0.9300	C16—S1	1.777 (3)
C4—C5	1.361 (5)	C16—H16A	0.9600
C4—H4	0.9300	C16—H16B	0.9600
C5—C6	1.393 (4)	C16—H16C	0.9600
С5—Н5	0.9300	C17—S1	1.780 (3)
С6—Н6	0.9300	C17—H17A	0.9600
C7—N1	1.469 (3)	С17—Н17В	0.9600
С7—С8	1.544 (3)	С17—Н17С	0.9600
С7—Н7	0.9800	N1—Zn1	2.0305 (19)
C8—O1	1.248 (2)	O1—Zn1	2.1047 (17)
C8—O2	1.248 (2)	O3—Zn1	1.9742 (18)
C9—N1	1.276 (3)	O4—Zn1	2.009 (2)
C9—C10	1.443 (3)	O4—H23	0.8500
С9—Н9	0.9300	O4—H24	0.8500
C10—C11	1.405 (3)	O5—Zn1	2.0015 (19)
C10-C15	1.430 (3)	O5—H21	0.8500
C11—C12	1.365 (4)	O5—H22	0.8499
C11—H11	0.9300	O6—S1	1.5147 (18)
C12—C13	1.382 (5)		
C6—C1—C2	119.6 (2)	C13—C14—C15	121.7 (3)
C6—C1—C7	119.8 (2)	C13—C14—H14	119.2
C2—C1—C7	120.64 (19)	C15—C14—H14	119.2
C3—C2—C1	119.6 (3)	03 - C15 - C14	110.0 (0)
C_2 C_2 U_2		05 015 014	118.8 (2)
С3—С2—П2	120.2	03—C15—C10	118.8 (2) 124.8 (2)
C1—C2—H2	120.2 120.2	O3-C15-C10 C14-C15-C10	118.8 (2) 124.8 (2) 116.4 (2)
C1-C2-H2 C4-C3-C2	120.2 120.2 120.3 (3)	O3-C15-C10 C14-C15-C10 S1-C16-H16A	118.8 (2) 124.8 (2) 116.4 (2) 109.5
C3-C2-H2 C1-C2-H2 C4-C3-C2 C4-C3-H3	120.2 120.2 120.3 (3) 119.9	O3-C15-C10 C14-C15-C10 S1-C16-H16A S1-C16-H16B	118.8 (2) 124.8 (2) 116.4 (2) 109.5 109.5
C3—C2—H2 C1—C2—H2 C4—C3—C2 C4—C3—H3 C2—C3—H3	120.2 120.2 120.3 (3) 119.9 119.9	O3-C15-C10 C14-C15-C10 S1-C16-H16A S1-C16-H16B H16A-C16-H16B	118.8 (2) 124.8 (2) 116.4 (2) 109.5 109.5 109.5
C3-C2-H2 C1-C2-H2 C4-C3-C2 C4-C3-H3 C2-C3-H3 C5-C4-C3	120.2 120.2 120.3 (3) 119.9 119.9 120.2 (2)	O3-C15-C10 C14-C15-C10 S1-C16-H16A S1-C16-H16B H16A-C16-H16B S1-C16-H16C	118.8 (2) 124.8 (2) 116.4 (2) 109.5 109.5 109.5 109.5
C3-C2-H2 C1-C2-H2 C4-C3-C2 C4-C3-H3 C2-C3-H3 C5-C4-C3 C5-C4-H4	120.2 120.2 120.3 (3) 119.9 119.9 120.2 (2) 119.9	O3-C15-C10 C14-C15-C10 S1-C16-H16A S1-C16-H16B H16A-C16-H16B S1-C16-H16C H16A-C16-H16C	118.8 (2) 124.8 (2) 116.4 (2) 109.5 109.5 109.5 109.5 109.5
C3-C2-H2 C1-C2-H2 C4-C3-C2 C4-C3-H3 C2-C3-H3 C5-C4-C3 C5-C4-H4 C3-C4-H4	120.2 120.2 120.3 (3) 119.9 119.9 120.2 (2) 119.9 119.9	O3-C15-C10 C14-C15-C10 S1-C16-H16A S1-C16-H16B H16A-C16-H16B S1-C16-H16C H16A-C16-H16C H16B-C16-H16C	118.8 (2) 124.8 (2) 116.4 (2) 109.5 109.5 109.5 109.5 109.5 109.5
C3-C2-H2 C1-C2-H2 C4-C3-C2 C4-C3-H3 C2-C3-H3 C5-C4-C3 C5-C4-C3 C5-C4-H4 C3-C4-H4 C4-C5-C6	120.2 120.2 120.3 (3) 119.9 119.9 120.2 (2) 119.9 119.9 119.9 120.4 (3)	O3-C15-C10 C14-C15-C10 S1-C16-H16A S1-C16-H16B H16A-C16-H16B S1-C16-H16C H16A-C16-H16C H16B-C16-H16C S1-C17-H17A	118.8 (2) 124.8 (2) 116.4 (2) 109.5 109.5 109.5 109.5 109.5 109.5 109.5
C3-C2-H2 C1-C2-H2 C4-C3-C2 C4-C3-H3 C2-C3-H3 C5-C4-C3 C5-C4-C3 C5-C4-H4 C3-C4-H4 C4-C5-C6 C4-C5-H5	120.2 120.2 120.3 (3) 119.9 119.9 120.2 (2) 119.9 119.9 120.4 (3) 119.8	O3-C15-C10 C14-C15-C10 S1-C16-H16A S1-C16-H16B H16A-C16-H16B S1-C16-H16C H16A-C16-H16C H16B-C16-H16C S1-C17-H17A S1-C17-H17B	118.8 (2) 124.8 (2) 116.4 (2) 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5
C3-C2-H2 C1-C2-H2 C4-C3-C2 C4-C3-H3 C2-C3-H3 C5-C4-C3 C5-C4-H4 C3-C4-H4 C4-C5-C6 C4-C5-H5 C6-C5-H5	120.2 120.2 120.3 (3) 119.9 119.9 120.2 (2) 119.9 119.9 120.4 (3) 119.8 119.8	O3-C15-C10 C14-C15-C10 S1-C16-H16A S1-C16-H16B H16A-C16-H16B S1-C16-H16C H16A-C16-H16C H16B-C16-H16C S1-C17-H17A S1-C17-H17B H17A-C17-H17B	118.8 (2) 124.8 (2) 116.4 (2) 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5
C3-C2-H2 C1-C2-H2 C4-C3-C2 C4-C3-H3 C5-C4-C3 C5-C4-H4 C3-C4-H4 C4-C5-C6 C4-C5-H5 C6-C5-H5 C1-C6-C5	120.2 120.2 120.3 (3) 119.9 120.2 (2) 119.9 120.4 (3) 119.8 119.8 119.8 119.9 (3)	O3-C15-C10 C14-C15-C10 S1-C16-H16A S1-C16-H16B H16A-C16-H16B S1-C16-H16C H16A-C16-H16C H16B-C16-H16C S1-C17-H17A S1-C17-H17B H17A-C17-H17B S1-C17-H17C	118.8 (2) 124.8 (2) 116.4 (2) 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5
$C_{3}-C_{2}-H_{2}$ $C_{4}-C_{3}-H_{2}$ $C_{4}-C_{3}-H_{3}$ $C_{2}-C_{3}-H_{3}$ $C_{5}-C_{4}-C_{3}$ $C_{5}-C_{4}-H_{4}$ $C_{3}-C_{4}-H_{4}$ $C_{4}-C_{5}-C_{6}$ $C_{4}-C_{5}-H_{5}$ $C_{6}-C_{5}-H_{5}$ $C_{1}-C_{6}-C_{5}$ $C_{1}-C_{6}-H_{6}$	120.2 120.2 120.3 (3) 119.9 119.9 120.2 (2) 119.9 120.4 (3) 119.8 119.8 119.8 119.9 (3) 120.1	O3-C15-C10 C14-C15-C10 S1-C16-H16A S1-C16-H16B S1-C16-H16B S1-C16-H16C H16A-C16-H16C H16B-C16-H16C S1-C17-H17A S1-C17-H17B H17A-C17-H17B S1-C17-H17C H17A-C17-H17C	118.8 (2) 124.8 (2) 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5
$C_{3}-C_{2}-H_{2}$ $C_{4}-C_{3}-C_{2}$ $C_{4}-C_{3}-H_{3}$ $C_{2}-C_{3}-H_{3}$ $C_{5}-C_{4}-C_{3}$ $C_{5}-C_{4}-H_{4}$ $C_{3}-C_{4}-H_{4}$ $C_{4}-C_{5}-C_{6}$ $C_{4}-C_{5}-H_{5}$ $C_{6}-C_{5}-H_{5}$ $C_{1}-C_{6}-C_{5}$ $C_{1}-C_{6}-H_{6}$ $C_{5}-C_{6}-H_{6}$	120.2 120.2 120.3 (3) 119.9 119.9 120.2 (2) 119.9 120.4 (3) 119.8 119.8 119.8 119.9 (3) 120.1 120.1	$\begin{array}{c} 03 \\ - 03 \\ - 03 \\ - 015 \\ - 010 \\ - 01$	118.8 (2) 124.8 (2) 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5
$C_{3}-C_{2}-H_{2}$ $C_{4}-C_{3}-H_{2}$ $C_{4}-C_{3}-H_{3}$ $C_{2}-C_{3}-H_{3}$ $C_{5}-C_{4}-C_{3}$ $C_{5}-C_{4}-H_{4}$ $C_{3}-C_{4}-H_{4}$ $C_{4}-C_{5}-C_{6}$ $C_{4}-C_{5}-H_{5}$ $C_{6}-C_{5}-H_{5}$ $C_{1}-C_{6}-C_{5}$ $C_{1}-C_{6}-H_{6}$ $C_{5}-C_{6}-H_{6}$ $N_{1}-C_{7}-C_{1}$	120.2 120.2 120.3 (3) 119.9 119.9 120.2 (2) 119.9 120.4 (3) 119.8 119.8 119.8 119.9 (3) 120.1 120.1 111.97 (16)	O3-C15-C10 C14-C15-C10 S1-C16-H16A S1-C16-H16B H16A-C16-H16B S1-C16-H16C H16B-C16-H16C S1-C17-H17A S1-C17-H17B H17A-C17-H17B S1-C17-H17C H17A-C17-H17C H17B-C17-H17C C9-N1-C7	118.8 (2) 124.8 (2) 116.4 (2) 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5
$C_{3}-C_{2}-H_{2}$ $C_{4}-C_{3}-H_{2}$ $C_{4}-C_{3}-H_{3}$ $C_{2}-C_{3}-H_{3}$ $C_{5}-C_{4}-C_{3}$ $C_{5}-C_{4}-H_{4}$ $C_{3}-C_{4}-H_{4}$ $C_{4}-C_{5}-C_{6}$ $C_{4}-C_{5}-H_{5}$ $C_{6}-C_{5}-H_{5}$ $C_{1}-C_{6}-H_{6}$ $C_{5}-C_{6}-H_{6}$ $N_{1}-C_{7}-C_{1}$ $N_{1}-C_{7}-C_{8}$	120.2 120.2 120.3 (3) 119.9 119.9 120.2 (2) 119.9 120.4 (3) 119.8 119.8 119.8 119.9 (3) 120.1 120.1 111.97 (16) 108.26 (15)	$\begin{array}{c} 03 \\ - 03 \\ - 015 \\ - 016 \\ - 0$	118.8 (2) 124.8 (2) 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 119.69 (18) 124.24 (15)

supplementary materials

N1—C7—H7	108.9	C8—O1—Zn1	116.45 (13)
C1—C7—H7	108.9	C15—O3—Zn1	125.28 (15)
С8—С7—Н7	108.9	Zn1—O4—H23	121.1
01—C8—O2	124.70 (19)	Zn1—O4—H24	117.3
O1—C8—C7	118.68 (17)	H23—O4—H24	109.4
O2—C8—C7	116.62 (18)	Zn1—O5—H21	118.0
N1—C9—C10	126.4 (2)	Zn1—O5—H22	108.9
N1—C9—H9	116.8	H21—O5—H22	109.0
C10—C9—H9	116.8	06—\$1—C16	104.74 (13)
C11—C10—C15	119.5 (2)	06— <u>\$1</u> — <u>C17</u>	106 13 (13)
C11—C10—C9	116.5 (2)	C16 = \$1 = C17	98 10 (13)
C15-C10-C9	124 1 (2)	03 - 7n1 - 05	97 31 (8)
$C_{12} - C_{11} - C_{10}$	127.1(2) 122.4(3)	03 - 7n1 - 04	96 26 (9)
C12 = C11 = H11	118.8	05 - 7n1 - 04	118 61 (9)
C10_C11_H11	118.8	0.3 - 7n1 - N1	92 18 (8)
$C_{11} - C_{12} - C_{13}$	118.6 (3)	05-2n1-N1	119 53 (8)
$C_{11} = C_{12} = C_{13}$	110.0 (5)	04 $7n1$ N1	119.33 (8)
$C_{11} - C_{12} - H_{12}$	120.7	$O_4 = Z_{m1} = O_1$	119.36 (9)
C13 - C12 - H12	120.7	$05 - 2\pi 1 - 01$	1/1.55(0)
C14 - C13 - C12	121.5 (3)	$03 - 2\pi 1 - 01$	87.49 (8)
C14—C13—H13	119.3	04—ZhI—OI	87.69(7)
C12—C13—H13	119.3	NI-ZnI-OI	/9.16(/)
C6—C1—C2—C3	-1.5 (4)	C11—C10—C15—C14	0.0 (3)
C7—C1—C2—C3	178.5 (2)	C9—C10—C15—C14	-179.7 (2)
C1—C2—C3—C4	0.2 (4)	C10—C9—N1—C7	-178.51 (19)
C2—C3—C4—C5	0.9 (5)	C10—C9—N1—Zn1	-4.2 (3)
C3—C4—C5—C6	-0.8 (5)	C1—C7—N1—C9	-77.4 (2)
C2—C1—C6—C5	1.6 (4)	C8—C7—N1—C9	161.56 (19)
C7—C1—C6—C5	-178.4 (2)	C1—C7—N1—Zn1	107.87 (16)
C4—C5—C6—C1	-0.5 (4)	C8—C7—N1—Zn1	-13.2 (2)
C6—C1—C7—N1	126.6 (2)	O2—C8—O1—Zn1	174.12 (17)
C2-C1-C7-N1	-53.4 (3)	C7—C8—O1—Zn1	-7.0 (2)
C6—C1—C7—C8	-113.2 (2)	C14—C15—O3—Zn1	-165.10 (19)
C2—C1—C7—C8	66.9 (3)	C10-C15-O3-Zn1	16.3 (3)
N1	13.2 (3)	C15—O3—Zn1—O5	-139.4 (2)
C1—C7—C8—O1	-109.3 (2)	C15—O3—Zn1—O4	100.7 (2)
N1—C7—C8—O2	-167.87 (18)	C15—O3—Zn1—N1	-19.2 (2)
C1—C7—C8—O2	69.7 (2)	C9—N1—Zn1—O3	13.31 (19)
N1-C9-C10-C11	174.9 (2)	C7—N1—Zn1—O3	-172.18 (14)
N1-C9-C10-C15	-5.4 (4)	C9—N1—Zn1—O5	112.98 (18)
C15—C10—C11—C12	1.0 (4)	C7—N1—Zn1—O5	-72.52 (15)
C9—C10—C11—C12	-179.3 (3)	C9—N1—Zn1—O4	-85.13 (19)
C10-C11-C12-C13	-0.9 (5)	C7—N1—Zn1—O4	89.38 (15)
C11—C12—C13—C14	-0.2 (5)	C9—N1—Zn1—O1	-166.21 (19)
C12—C13—C14—C15	1.2 (5)	C7—N1—Zn1—O1	8.29 (13)
C13—C14—C15—O3	-179.8 (3)	C8—O1—Zn1—O5	120.12 (16)
C13—C14—C15—C10	-1.1 (4)	C8—O1—Zn1—O4	-121.10 (16)
C11—C10—C15—O3	178.6 (2)	C8—O1—Zn1—N1	-0.59 (15)
C9—C10—C15—O3	-1.1 (4)		(-)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A	
O4—H23…O6	0.85	1.90	2.725 (3)	164	
O4—H24···O2 ⁱ	0.85	1.88	2.695 (3)	160	
O5—H21···O2 ⁱⁱ	0.85	1.81	2.629 (2)	161	
O5—H22···O6 ⁱⁱⁱ	0.85	1.93	2.742 (3)	159	
Symmetry codes: (i) $-x+2$, $-y+1$, $-z$; (ii) $x-1$, y , z ; (iii) $-x+1$, $-y+1$, $-z$.					

Fig. 1

